1300 Henley Court

A DIGILENT

www.store.digilent.com

Lab 6b: Closed-loop Process Control

Revised May 23, 2017
This manual applies to Unit 6, Lab 6b.

1 Objectives

Generate PWM outputs to implement analog motor supply voltage.

Implement a tachometer operation using PIC32 Timers.

Develop MPLAB X projects that implement closed-loop motor control.

Develop the C program code to implement a Pl controller and a moving averaging digital filter.
Manage multiple background tasks in an interrupt driven system.

ok wneE

Send real-time data to monitoring devices.

2 Basic Knowledge

Fundamental knowledge of linear systems.

How to configure 10 pins on a Microchip® PIC32 PPS microprocessor.

How to implement a real-time system using preemptive foreground-background task control.
How to generate a PWM output with the PIC32 processor.

How to configure the Analog Discovery 2 to display logic traces.

AN O o

How to implement the design process for embedded processor based systems.

3 Equipment List

3.1 Hardware

Basys MX3 trainer board

Workstation computer running Windows 10 or higher, MAC OS, or Linux
2 Standard USB A to micro-B cables

5V DC motor with tachometer

vk wnhe

5V, 4A power supply

In addition, we suggest the following instruments:

6. Analog Discovery 2

3.2 Software

The following programs must be installed on your development work station:

. Copyright Digilent, Inc. All rights reserved. _
Unit 6, Lab 6b Other product and company names mentioned may be trademarks of their respective owners. Page 1o0f 15

http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/
http://store.digilentinc.com/usb-a-to-micro-b-cable/
http://store.digilentinc.com/motor-gearbox-1-19-gear-ratio-custom-12v-motor-designed-for-digilent-robot-kits/
http://store.digilentinc.com/5v-4000ma-switching-power-supply/
http://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/

Lab 6b: Closed-loop Process Control A DIGILENT

Microchip MPLAB X® v3.35 or higher

PLIB Peripheral Library

XC32 Cross Compiler

WaveForms 2015 (if using the Analog Discovery 2)

PUuTTY Terminal Emulation
Spreadsheet application (Microsoft Excel)

ok wneE

4 Project Takeaways

How to read an analog voltage with a PIC32 processor.

How to use the PIC32 Output Compare to implement a PWM analog output.

How to use the PIC32 Timer external input to measure frequency to implement a tachometer.
How to use the PIC32 Input Capture period measurement to implement a tachometer.

vk wNne

Fundamental analog and filtering concepts for data smoothing and closed-loop control.

5 Fundamental Concepts

The purpose of this laboratory exercise is to implement a closed-loop control system to control the speed on a DC
electric motor. The processing involves two different types of analog inputs and generating an analog output using
pulse-width modulation. We will see how both analog and digital signal conditioning can reduce measurement
noise that can degrade system performance. This lab requires that an electronic circuit be constructed to provide
an interface between the Basys MX3 board and the DC motor tachometer.

5.1 Feedback Control

Feedback control is a common and powerful tool when designing a control system that can compensate for load
variations and perturbations. A feedback loop as portrayed in Fig. 5.1, taking the system output into consideration.
This enables the system to adjust its performance to meet a desired output response in spite of variations in motor
characteristics, noise, and disturbances that may be introduced anywhere in the system.

The controller action and feedback compensation is implemented using digital filtering and digital control theory.
Digital filtering involves discrete time and discrete amplitude signals that are generated when continuous signals

are sampled with an analog-to-digital converter at fixed time intervals.! The primary objective of the control
system is to achieve zero error, designated as “e,” in Fig. 5.1. The error signal is the difference between the sum of
the control inputs, r,, and the feedback signal, y,. The variable c, is the output from the control algorithm used to
drive the system machine or process. The subscript “n” on these variable denotes the fact that they are generated
at discrete times.

1 Signal Processing for Communications, Chapter 1.3, http://www.sp4comm.org/webversion/livre.html#x1-
100001.3

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20f15

http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://store.digilentinc.com/waveforms-2015-download-only/
http://www.putty.org/
https://en.wikipedia.org/wiki/Discrete-time_signal
https://en.wikipedia.org/wiki/Continuous_signal
http://www.sp4comm.org/webversion/livre.html#x1-100001.3
http://www.sp4comm.org/webversion/livre.html#x1-100001.3

Lab 6b: Closed-loop Process Control A DIGILENT

PIC32MX370
Microprocessor
. PWM DRVB835DSSR
Analog T In C "l Computer | Cn - H-Bridge
Input Control @ Algorithm v Power — DC Motor
ADC y DAC Amplifier
Terminal --— Efé% l
LCD < Frequency > Hall Sensor
Display Sensor Tachometer

Figure 5.1. Closed-loop motor control block diagram.

Besides changes in mechanical loads on the motor, the major sources of noise or disturbances into the control
loop is from the output amplifier, the process converting electrical energy to mechanical energy, and the
tachometer used to measure the mechanical output. Noise can also be introduced on both the analog and discrete
inputs. In our system we will consider only disturbed signals at the output of the tachometer and the output of the
signal conditioning comparator.

5.2 Closed-loop Motor Control

Negative feedback generally promotes faster settling to an equilibrium condition and reduces the effects of
perturbations, as opposed to positive feedback. Systems employing negative feedback loops, in which just the right
amount of correction is applied with optimum timing, can be very stable, accurate, and responsive.

Considering the problem of controlling the speed of a DC motor, we will use negative feedback to cause the motor
speed to be linearly dependent on the Analog Input Control voltage. Since the speed of the motor is roughly
proportional to the applied voltage, it would seem that one would simply need to construct an equation that
describes speed as that particular function of voltage, and then set the motor voltage based on the desired speed.
This was the approach we took in Lab 6a. However, the motor speed is also a function of the load applied to the
motor and dynamic effects such as friction and inertia. Closed-loop controllers are used to compensate for those
issues that affect the motor speed and provide a linear response to linear inputs.

The issue now becomes choosing the algorithm that the microprocessor must implement to provide the desired
speed control under varying load conditions. As described in Appendix C of Unit 6, classical controls uses
proportional plus integral plus derivative (PID) control, which works well for controlling many dynamic systems.

Other types of controllers use fuzzy logic and artificial neural networks (ANN) and are most suited for controlling

extremely nonlinear systems.

Because of the difficulty of “tuning” PID controllers to avoid instability, this lab will use just proportional plus

integral (P1) control. Classical control designs use mathematical equations to describe continuous systems and
define the controller action, specifically differential equations and Laplace transforms. For digital computers to
implement the controller action, the continuous equations must be transformed into a form that can be converted
to digital code, as discussed in Unit 6.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30f 15

https://en.wikipedia.org/wiki/Classical_control_theory
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

Lab 6b: Closed-loop Process Control A DIGILENT

6 Problem Statement

As illustrated in Fig. 5.1, closed-loop control incorporates a feedback signal along with the analog and discrete
inputs to the control process. The tachometer frequency will be measured by using the Input Capture of the PIC32
to determine the signal period which is then inverted to yield the frequency. The tachometer period
measurements are filtered with a moving averaging low pass digital filter as described in Lab 6a.

This lab is to use a digital implementation of proportional plus integral (PI) control in the control loop. The speed of
the motor will be linearly dependent on the voltage controlled by the Analog Input Control potentiometer. This is
described by Eq. 6.1 which results in linear motor speed control that will vary between 30% and 90% of maximum
motor speed.

Analog Control Voltage %0.6

Motor Speed = + 0.3| - Maximum motor speed Eq.6.1
I)+03]

Maximum Analog Control Voltage
The range of 30% to 90% is selected on the characteristics of the DC motor we are using for Lab 6a and 6b. By
experimentation, it was determined that when the motor supply is set to 5.0 V, the %PWM must be set above 25%
to 28% or the motor will not turn as shown in Fig. 8.3 of Lab 6a. If the motor is not turning, then there are no input
capture interrupts to set the RPS variable in the control algorithm.

7 Background Information

7.1 Closing the Control Loop

Because of ease of implementation and stability, we will implement proportional plus integral (Pl) control in this
lab. The control algorithm for the Pl control is implemented by the pseudo code of Listing 7.1. This code is
executed at the frequency established by the PWM PERIOD. Any update to the PWM duty cycle is made when
Timer 2 resets.

The software shown in Listing B.6 of Lab 6a specifies where to add the PI control code for the pseudo code in
Listing 7.1 below. (This code is reproduced from Listing C.1 of the Unit 6 tutorial.) Using the motor specified in the
Equipment List, the constant (KP+KI) is set to 60/1024 and (KP-KI) to 60/1024. These constants were selected by
experimentation solely for demonstration purposes and may need to be adjusted for other types of motors.

Listing 7.1. Pseudo Code for Digital Pl Controller

#define GetPeripheralClock() 10000000 // PBCLK set in config_bits.h
#define PWM_MAX (GetPeripheralClock()/10000) // Set output range
#define PWM_MIN 0

static int ERROR = 0; // Initial value for e,
static int CTRL = 0; // Initial value for cn,,
TACH = Read motor speed (Hz); // Global variable set by InputCapture ISR

// The SET_SPEED reference input is scales using a first order polynomial in the form y = ax + b to set the slope, a, with
// units rps/ADC bit and ”"b” being the minimum speed when the ADC input is zero
SET_SPEED = Scaled potentiometer setting // Determine speed set point from ADC

ERROR_LAST = ERROR; // Save previous error and control values
CTRL_LAST = CTRL;

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 15

Lab 6b: Closed-loop Process Control A DIGILENT

ERROR = SET_SPEED - TACH; // Compute new error value
CTRL = (KP + KI)*ERROR - (KP - KI)*ERROR_LAST + CTRL_LAST; // Compute new control output value

if(CTRL > PWM_MAX) then PWM_CONTROL = PWM_MAX; else // Limit output range to prevent windup

{
If (CTRL < PWM_MIN) then PWM_CONTROL = PWM_MIN; else

PWM_CONTROL = CTRL; // Output PWM value

Figure 7.1 was generated by monitoring the motor tachometer using the SPI_CK DIO 4 pin on the Analog Discovery
2 connector that is toggled in the input capture ISR, as shown in Listing B.4 of Lab 6a. Examining the plot for the
tachometer in Fig. 7.1, we see than the Pl algorithm requires about 150 ms to achieve steady state.

& WaveForms (DC Motor)}

Workspace Settings Window Help i
Il welcome [E] Logic 1 [E3 I
Eile Control View Window E]
IH — “b A Mode: Repeated [=] mrigger: |auto [=][Puse]mnputs: 100MHz DIO 0..15 Position: |8 ms (=)
Buffer: 100 4] 4 source: |Digital [=](CAdvanced [Reset: None Trigeer: DIO 4=Rise * | Base: 50 ms/div ==
e, - S 4 | n *
Name Pin T| Done [204% samples at 4 kHz | 2017-02-01 07:30:25.180 LR K -
2 I
wa oouX e
[ot w0 T TTUUUUUUUUUY L) U U D USU U UUUUUULUUU DU UULUUU UL UL
x- 242 ms 182 ms 142 ms a2 ms “42ms i sBms 108 ms 158 ms 208 ms 258 ms
[Discoveryz sM:21032141880F | [Status: OK |

Figure 7.1. Motor speed response for a step input from CW to CCW at 30% PWM for PI closed-loop control.

8 Lab6b

The DC motor used in Lab 6a and 6b has a 19 to one reduction gear on the output shaft. The Hall Effect sensor
used for the tachometer is mounted to the motor shaft and hence will be rotating 19 times faster than the output

shaft. All motor speed measurements are based on the tachometer.

This lab will be divided into two phases. The first phase uses open-loop control with proportional control that
includes the tachometer input to the processor. The tachometer input will be filtered with a moving average digital
filter before being displayed on the LCD and sent to the UART.

Phase two incorporates proportional plus integral control of the motor speed control. The reference input, r,, will
be derived from the Analog Control Input using the relationship previously described in Eq. 6.1.

8.1 Requirements

1. Phase 1: Background Tasks

a. Same as background tasks for Lab 6a.

b. Set peripheral bus clock for 10 MHz in config_bits.h.

c. Timer 2is to be used for the PWM generation
i. Setthe Timer 2 input clock for 10 MHZ
ii. Setthe Timer 2 period for 10000 counts

d. Timer 3 is to be used as the time reference for input capture.
i. Setthe Timer 3 input clock for 625000.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 50f 15

Lab 6b: Closed-loop Process Control A DIGILENT

ii. Setthe Timer 3 period for maximum counts (65536).
2. Phase 1: Foreground Tasks
a. Same as foreground tasks for Lab 6a.
b. Basys MX3 JA-10 (PIC32MX370 Port G pin 9) is to be used for the Input Capture channel 1.
c. Input Capture ISR
i. Aninterruptis to be generated on each positive transition of the tachometer signal.

ii. Read the captured Timer 3 value.

iii. Compute the period of the tachometer signal as the difference between two successive
Timer 3 captures.

iv. Implement a fourth order Moving Averaging low-pass filter to reduce noise on the
period measurement.

v. Compute the motor speed in RPS to be used in the Pl control loop and the background
display tasks, assuming that the motor speed in revolutions per second (rps) is the same
as the tachometer frequency.

d. Timer 2 ISR
i. Readthe ADC

ii. Compute the set speed using Eq. 6.1 above

iii. Compute the actual motor speed as a percentage of maximum speed when PWM is set
to 100%.

iv. Implement the control algorithm following the pseudo code shown in Listing 7.1 and
using the control constants provided in Unit 6 background text.

3. Phase 2: Background Tasks
a. All background tasks are to be serviced every 250 ms.
b. The motor speed setting (spd), the tachometer measurement (rps), PWM control output (cn),
and the control error (en) is to be displayed on the Basys MX3 LCD as shown in Fig. 8.1.

——

- S .
HAADARSAMSALDM

121 1Z1-121 10
1=l

171 151101 ICL.| -

Figure 8.1. LCD display for closed loop operation.

c. In addition to the data displayed on the LCD in Fig. 8.1, display the measured Analog Input
Control voltage on your workstation terminal as shown in Fig. 8.2.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 15

Lab 6b: Closed-loop Process Control A DIGILENT

P N
£B COM32 - PuTTY ESREEE
ELC: 632 Speed: 67 RF5: 148 PWM: 2506 ERERCE: a0 -
ELC: 630 Speed: 66 RF5: 148 PWM: 2504 ERERCE: a0
EDC: 632 Speed: 67 REPF5: 149 PWM: 2501 ERECE: a0
EDC: 630 Speed: 66 REPF5: 148 PWM: 2495 ERECE: a0
EDC: 628 Speed: 66 REF5: 149 PWM: 2500 ERECE: a0
EDC: 630 Speed: 66 REF5: 148 PWM: 2507 ERECE: a0
LDC: 630 Speed: 66 EF5: 149 PWM: 2501 ERECE: a0
LDC: 626 Speed: 66 EPF5: 148 PWM: 2499 ERECE: a0
LDC: 630 Speed: 66 EF5: 147 PWM: 25086 ERECE: a0
L s

| — : -

Figure 8.2. Terminal screen for closed loop motor control.

d. Using the slide switches on the Basys MX3 board, control the motor operations as listed in Table
8.1.

Table 8.1. Motor control modes

Run the motor according to the direction set by

Coast operation

SW7
SW6 Run the motor according to the direction set by Brake (STOP)
SW7
SwW7 Rotate CCW at speed set by analog input control Rotate CW at speed set by analog input

control

4. Phase 2: Foreground Tasks
a. Input Capture ISR
i. Compute the difference in Timer 3 ticks between two successive positive transitions of
the tachometer.
ii. Implement a 4+ order moving average on the tachometer period.
iii. Compute the motor speed in RPS.
b. The Timer 2 will serve the following functions:
i. The PIC32 ADC will read the digitized value of the “Analog Input Control” voltage.
ii. Scale the analog control voltage as described by Eq. 6.1.
iii. Compute the PWM output from the proportional plus integral (P1) algorithm.
iv. Write to the output compare secondary registers (OCxRS) that generate the PWM
output.

8.2 Design Phase
This design will be completed in two phases.

1. Phasel
a. Complete the design for Phase 1 and 2 of Lab 6a.
b. Modify the Input Capture function that measures the tachometer period to implement the
moving average low pass filter specified by the Requirement 4.ii.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 0f 15

Lab 6b: Closed-loop Process Control A DIGILENT

c. Create the control flow diagrams that describe the process to implement the design
requirements for Phase 1.
2. Phase?2
a. Create a data flow diagram that modifies the one created for Phase 1 but adds the following
tasks.
i. LCD display as specified in the requirements
ii. UART output as specified in the requirements
iii. Add the PI control and motor PWM control to the Timer 2 ISR
b. Create the control flow diagrams that describe the process to implement the design

requirements for Phase 2.

8.3 Construction Phase

1. Since the motor must be turning before the tachometer will generate the pulses needed to cause an input
capture, | recommend that the motor operate in open-loop mode for a few hundred milliseconds so a
valid motor speed reading can be used in the closed-loop algorithm.

2. Phasel

a. Complete Phase 1 and 2 of Lab 6a.
i. Develop background and foreground functions.

b. Proceed to Phase 1 testing

a. Attach the workstation monitor and launch the terminal emulator application.
b. Portthe LCD code from Lab 3a or 3b into this project and display the motor Analog Control Input

value, the %PWM and the motor speed in RPM.
c. Port the UART code from Lab 4a into this project and initialize for 38000 BAUD with no parity.
d. Add the code necessary to initialize the input capture channel 1 (IC1) that uses Timer 3.
Modify the background and foreground functions developed in Construction Phase 1 to report

the motor operations.

84 Testing

1. Phasel
a. Setthe Analog Input Control potentiometer for approximately 1 V.
b. Run the project to make the DC motor spin.
c. Measure the tachometer frequency using the oscilloscope measurements as shown in Fig. 8.3.

W, WaveForms (DC Motor) | [Ee
Workspace Settings Window Help
o @
Eile Control View Window E]
N — b @ Mode: Repeated [=] mrigger: [auto [=][_ Puse Jmnputs: [100mHzDI0O0..15 Posiion: |8 ms =)&)
ingle un
Buffer: 100 2| 4 Source: | pigital [=](CAdvanced [Reset: Mone Trigger: DIO 4=Rise % |Base: 2ms/div -IE
e, = T. € = T = » || Cursors & x
. " "
Name Pin T[Done 2042 samples at 100 kEz | 2017-02-01 10:05:00.130 B LB o dpnermal e petta ==Removel | = show,
ANIZ p X I Position Ref ax 1% -
[b10 12 X 142,834 us [] none [+] -
[rach ey 2|9.3674ms [»| 1 [¥]e.3295ms [¢] 10721z -
X~ -2ms 1| 2ms 4ms &ms 8ms 241 ¥ 12ms 14ms 16 ms 18ms -
Discovery2 5M;210321A1380F | [Status: OK
= _
Figure 8.3. Tachometer timing for 106 Hz Display on LCD.
Copyright Digilent, Inc. All rights reserved.
: Page 8 of 15

Other product and company names mentioned may be trademarks of their respective owners.

Lab 6b: Closed-loop Process Control A DIGILENT

d. Verify that the frequency measurement on the LCD and that reported to the UART terminal

match.

2. Phase 2.

a. Maintain the oscilloscope connections as Phase 1 testing step c.
b. Set the oscilloscope time base for 0.05 seconds per division
c. Using the oscilloscope single trace, capture the tachometer transition just when the motor

rotation direction is reversed using SW7, as shown in Fig. 8.4.

\
M WaveForms (DC Motor) = | B [

Workspace Settings Window Help

Welcome [E] Logic 1 [E3

AIN1
] Tach

Eile Control View Window D

IN — “b o Mode: Repeated E Trigger: Auto E Inputs: 100MHz DIO 0..15 Position: 8ms El

L= o Buffer: [100 4+ < Source: |Digital [=](Cadvanced][reset: None Trigger: DI 4=Rise < |Base: 50 ms/div =

e, - T, < " + || Cursors 8 x
Name Pin T Done |2042 samples at 4 kHz | 2017-02-01 10:08:07.754% LK +|| 4P mNormal o Delta == RemoveAll | : Show,

Atz v b TTTTTHTITTIITTAT: Focon | A X e i

oo 12X O R AR R AT IR ACARRTCR LS
: putuuy L Uy ruyUy

oo 4

X -

-242ms -192ms -142ms -92ms -42ms E‘s 58 ms 108 ms 158 ms 208 ms 258 ms -

Manual Trigger

[Discovery2 SN:21032141880F | [Status: OK |

—

Figure 8.4. PWM output timing.

d. Determine the time for the motor to reach steady state rps in the new direction, marked by a
uniform tachometer frequency.

e. Adjust the Analog Input Control potentiometer for an ADC value of 0 to 1024 in steps of 100.
Complete Table 8.2, recording the specified entries.

Table 8.2. Closed loop motor speed performance.

Analog Input ADC | % PWM | Motor Speed - RPS

0
100
200
300
400
500
600
700
800
900
1000

f. Using a spreadsheet program, plot the results for both the open loop control measured in Lab 6a
and for the closed-loop control measured above. This plot should look similar to Fig. 8.5.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 15

Lab 6b: Closed-loop Process Control A DIGILENT

10

fepd
Y]
[as]

Pl
9
Lae]

=L RPS

[
Lo
Lar]

[
Jha
h

™~

CLRPS

=]
[=x]

e
L]

I il T T T T 1

-100 100 300 500 700 200 1100

=
[=s]

Figure 8.5. Motor speed vs Analog Input Control ADC value for open-loop (OL RPS) and closed-loop (CL RPS) control schemes.

Questions

What do you conclude from the plots in Fig. 8.5?

Why does Fig. 7.1 show that the motor decelerates more quickly than accelerate?

What affect does the order of tachometer moving averaging low pass filter have on the motor response
time?

What effect does the execution time for updating the LCD and sending the UART message have on the
tachometer period measurements using the PIC32 capture and compare feature?

What effect does the execution time for updating the LCD and sending the UART message have on the PI
control algorithm?

References

“Open-vs. closed-loop Control”, Vance VanDoren, Control Engineering, Aug. 28, 2014

DRV8835 Data Sheet, https://www.pololu.com/file/0J570/drv8835.pdf.

“Brished DC Motor Basics Webinar”, John Moutton, Microchip Technologies Inc.,
http://www.microchip.com/stellent/groups/SiteComm _sg/documents/DeviceDoc/en543041.pd
f.

“AN905 Brushed DC Motor Fundamentals”, Reston Condit, Microchip Technology Inc, Aug. 4, 2010,

4,
http://ww1.microchip.com/downloads/en/AppNotes/00905B.pdf.

5. AN538, “Using PWM to Generate Analog Output”, Amar Palacheria, Microchip Technology Inc.,
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf.

6. “AB-022: PWM Frequency for Linear Motion Control”, Precision Microdrives ™,
https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-
motion-control.

7. Scientists and Engineer’s Guide to Digital Signal Processing, Dr. Steven W. Smith,
http://www.dspguide.com/.

e SToGUEt and Compamenames mentioned may be trademarks of their respective owners. Page 10 of 15

https://www.pololu.com/file/0J570/drv8835.pdf
http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en543041.pdf
http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en543041.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00905B.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf
https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-motion-control
https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-motion-control
http://www.dspguide.com/

Lab 6b: Closed-loop Process Control A DIGILENT

8. “Implementing a PID controller Using a PIC18 MCU”, Chris Valenti, Microchip Technologies Inc., 2005,
http://ww1l.microchip.com/downloads/en/AppNotes/00937a.pdf.
9. Real Time Systems Design and Analysis 4+ Edition, http://droppdf.com/v/s2EZM.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 110f15

http://ww1.microchip.com/downloads/en/AppNotes/00937a.pdf
http://droppdf.com/v/s2EZM

Lab 6b: Closed-loop Process Control

ADIGILENT
Appendix A: Lab 6a Motor Configuration

o
(1]}
(2}
(o}
<
m
b1}
<

»
4
>
=
(o]
@
V)

N3oIav

INPUT
CONTROL

ueme] "A'S €M ALHOO
HSLOOOXGLOOZZSl

Figure A.1. DC Motor connection to the Basys MX3 processor board.

Copyright Digilent, Inc. All rights reserved.

Other product and company names mentioned may be trademarks of their respective owners.

Page 12 of 15

Lab 6b: Closed-loop Process Control A DIGILENT

Appendix B: Lab 6a Code Listings

Listing B.1. Initialize ADC10 to Read Analog Channel 2

void ADC10Init ()
{
// define setup parameters for OpenADC10
// Turn module on | output integer | trigger mode auto | enable auto sample
#define ADC PARAM1 ADC MODULE ON | ADC_FORMAT INTG | ADC CLK AUTO | ADC_AUTO_ SAMPLING ON

// define setup parameters for OpenADC10
// ADC ref external | disable offset test | disable scan mode |
//perform 2 samples | use dual buffers | use alternate mode
#define ADC PARAM2 ADC VREF AVDD AVSS | ADC OFFSET CAL DISABLE | ADC SCAN OFF | \\
ADC_SAMPLES PER_INT 2 | ADC_ALT BUF_ON | ADC_ALT_ INPUT_ON

// define setup parameters for OpenADC10
// use ADC internal clock | set sample time
#define ADC PARAM3 ADC CONV CLK INTERNAL RC | ADC SAMPLE TIME 15

// define setup parameters for OpenADC10
// do not assign channels to scan
#define ADC_PARAM4 SKIP_SCAN_ALL
// define setup parameters for OpenADC10
// set AN2 as analog inputs
#define ADC_PARAMS ENABLE_AN2_ANA Motor driver output pin assignments

// wait for the first conversion to complete so there will be valid data
// in ADC result registers
while (!ADICONlbits.DONE) ;

// Start Timer 2 interrupts
OpenTimer2 ((T2 _ON | T2 SOURCE_INT | T2 PS 1 4), PWM PERIOD-1);
ConfigIntTimer2 (T2 INT ON | T2 INT PRIOR 1);

INTConfigureSystem (INT SYSTEM CONFIG MULT VECTOR) ;
INTEnableInterrupts();

Listing B.2. Timer 2 ISR to Read ADC10 Channel 2 and Set PWM

int speed; // variable is required to be declared global

void _ ISR(_TIMER 2 VECTOR, IPLISOFT) Timer2Handler (void)
{
unsigned int offset;
unsigned int channel2;
int
// Determine buffer offset
offset = 8 * ((~ReadActiveBufferADC10() & 0x01));

// Read the result of channel 2 conversion from the idle buffer
channel?2 = ReadADC10 (offset); // Read the analog buffer
speed = (channel2 * 100) / ADCMAX; // Convert to PWM in %

// User supplied code to determine required motor control mode as per
// Requirements and “MOTOR _CTRL” declaration in Listing 6 below.

motor (motor control mode, speed); // Set motor rotation direction and speed
mT2ClearIntFlag() ; // Clear Timer 2 interrupt flag
}
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 15

Lab 6b: Closed-loop Process Control

Listing B.3. Input Capture and Timer 3 Initialization

#define T3_TICK 0
#define TACHout BIT 6
tachInit (void)

{

// Maximum Timer 3 period

// RF6 is for tachometer instrumentation

PORTSetPinsDigitalOut (IOPORT F, TACHout); //

// Enable Input Capture Module 1
// - Capture every rising edge
// - Enable capture interrupts
// - Use Timer 3 source
// - Capture rising edge first
ANSELGbits.ANSGYS = 0;
TRISGbits.TRISGY = 1;

ConfigCNGPullups (CNGY9 PULLUP_ENABLE) ;

ICIR = 0b00000001;
OpenCapturel (IC_EVERY RISE EDGE |

Instrumentation only

// Set RG9 as digital IO

// Set RGY9 as input

// Enable pull-up resistor

// Map RG9 to Input Capture 1

IC_INT 1CAPTURE | IC_TIMER3 SRC |\
IC FEDGE RISE | IC ON);

ConfigIntCapturel (IC_INT ON | IC_INT PRIOR 3 | IC_INT SUB PRIOR 0);

// Timer 3 initialization
mIClClearIntFlag();

ConfigIntTimer3 (T3 INT ON | T3 INT PRIOR 2 | T3 INT SUB PRIOR 0);
OpenTimer3(T3 _ON | T3 _PS 1 16, T3 _TICK-1);

mT3IntEnable (1) ;

Listing B.4. Input Capture ISR

void _ ISR(_INPUT CAPTURE 1 VECTOR, IPL3SOFT)

{
ReadCapturel (con_buf) ;

//

Capturel (void)

// Read captures into buffer

PORTToggleBits (IOPORT F, TACHout); // For tachometer instrumentation

// User supplied code to determine the period between two successive interrupts

mIClClearIntFlag();

Listing B.5. Timer 3ISR

void ISR(_TIMER 3 VECTOR, IPL2SOFT)
{

Timer3Handler (void)

// User supplied code to blink LED 3 once each second for indication only

mT3ClearIntFlag();
}

Listing B.6. PWM Constants and Macros Definitions

// Motor driver output pin assignments

#define AINlbit BIT 3
#define AIN2bit BIT 8
#define ENAbit AIN2bit
#define MODEbit BIT 1

// Motor drive pin control macros

#define setPHASEAL (a); {if (a) LATBSET
#define setPHASEA2(a); ({if(a) LATBSET
#define setENA (a); {if (a) LATESET

// I0 pin mapping constants
#define PPS RE8 0OC2 0b00001011
#define PPS RB3 0C4 0b00001011

// PWM period constants

Copyright Digilent, Inc. All rights reserved.

AINlbit;
AIN2bit;
ENAbit;

// RB3
// RES8
// RES
// RF1

else LATBCLR AINlbit;}
else LATBCLR AIN2bit;}
else LATECLR = ENAbit;}

// Map RE8 to OC2 for PWM
// Map RB3 to OC4 for PWM

Other product and company names mentioned may be trademarks of their respective owners.

A DIGILENT

EnableIntT3 - ISR for Timer 3 is required

Page 14 of 15

Lab 6b: Closed-loop Process Control A DIGILENT

#define PWM PERIOD (GetPeripheralClock () /1000)-1 // One ms PWM period
#define PWM100 PWM_PERIOD // 100% PWM duty cycle

N

// Motor control macros — the parameter
// PWM period and divided by 100.
#define MOTOR MODE (a) { if(a) {LATFSET = MODEbit; else LATBCLR = MODEDbit;}
#define MOTOR COAST () ; { SetDCOC2PWM (0); SetDCOC4PWM(0) 1}

#define MOTOR CW(a); { SetDCOC4PWM(a); SetDCOC2PWM(0) }

#define MOTOR CCW(a) ; { SetDCOC4PWM(0); SetDCOC2PWM(a) }

#define MOTOR STOP () ; { SetDCOC2PWM (PWM100); SetDCOC4PWM (PWM100); }

enum MOTOR CTRL {COAST=0, CW, CCW, BRAKE} ;

a” is the PWM percentage multiplied by the

Listing B.7. PWM Initialization

void motor init (void)

{

// Set all motor driver outputs zero
setPHASEAL (0) ;
setPHASEA2 (0) ;

// Make motor driver pins outputs
PORTSetPinsDigitalOut (IOPORT B, AINlbit); //RB3
PORTSetPinsDigitalOut (IOPORT E, AIN2bit); //RES8

// Map Port pins to output compare channels
RPB3R = PPS RB3 0C4; // Map RB3 to 0C4 for PWM
RPESBR = PPS RE8 0C2; // Map RE8 to 0C2 for PWM

// Set motor driver IC for parallel outputs
setMOTOR_MODE (0) ;

// Initialize two PWM channels
OpenTimer2 ((T2_ON | T2 SOURCE_INT | T2 PS 1 1), PWM PERIOD);
ConfigIntTimer2 (T2 INT ON | T2 INT PRICR 1);
OpenOC2((OC_ONIOC_TIMER_MODE16|OC_TIMER2_SRC|OC_PWM_FAULT_PIN_DISABLE),
0, 0);
OpenOC4 ((OC_ON|OC_TIMER MODE16|OC_TIMER2 SRC|OC_PWM FAULT PIN DISABLE),
Or 0):

// Enable all interrupts
INTConfigureSystem (INT SYSTEM CONFIG MULT VECTOR) ;
INTEnableInterrupts();

Listing B.8. Code Listing Motor Direction and Speed Control

void motor (enum MOTOR CTRL mc, unsigned int speed)
{

unsigned int pwm;

pwm = ((speed * PWM PD)/100) - 1; // Compute PWM setting values for Lab 6a only
/* Insert code that implements the specifications for Lab 6b here */
switch (mc) // Determine direction of rotation
{
case COAST:
MOTOR_COAST () ; // Set all outputs off
break;
case CW:
MOTOR_CW (pwm) ; // Set CW speed
break;
case CCW:
MOTOR_CCW (pwm) ; // Set CCW speed
break;
case BRAKE:
MOTOR_BRAKE () ; // Set all outputs on to short motor inputs
break;
}
}
gtgﬁg;lgpé(?dgltlggg Ic%CﬁApgr:{/gE;ﬁgssenz\g\(zioned may be trademarks of their respective owners. Page 150f 15

